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Abstract

Climatic and anthropogenic changes cause the deprivation of distinct 
ecosystems in Costa Rica, transforming climatic, ecological, and geomorphic 
conditions. The high tropical biodiversity of Costa Rica and the tropics is suitable 
to improve the understanding of hydrogeomorphic process dynamics and to 
produce baseline data on past disasters in scarce-data regions. The principal 
motivation to connect natural hazards and dendrochronology on tropics is the 
desire to create methods that can reduce its exposure and vulnerability. The 
principal research aim of this study is to give reference data that can improve 
the understanding of hydrogeomorphic processes and to explore the potential 
of tropical trees in dendrochronological applications. This paper combines 
remote sensing, meteorological assessments, and dendrochronology analyses, 
hydraulic modelling, and risk assessments. This innovative research describes 
the reduced understanding in treering analysis in Costa Rica related with past 
disasters and their linkage to climate. This study will likely contribute to the 
implementation of new methodologies in disaster risk research, and it will 
promote future adaptation strategies in the most biodiverse region of the world.

Key words: dendrochronology, natural hazards, disaster risk reduction, tropics, developing 
countries.

Resumen

Los cambios climáticos y antropogénicos están contribuyendo a la degradación 
de diferentes ecosistemas en Costa Rica, alterando así las condiciones climáticas, 
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ecológicas y geomórficas. La hipótesis de este trabajo es que la alta biodiversidad 
tropical de Costa Rica y los trópicos es adecuada para mejorar la comprensión de 
la dinámica de los procesos hidrogeomórficos y generar datos de referencia sobre 
desastres pasados en una región con datos limitados. La principal motivación 
para vincular las amenazas naturales y la dendrocronología en esta región de 
baja latitud es la persistente escasez de datos sobre procesos hidrogeomórficos 
pasados y el deseo de definir métodos que puedan reducir su exposición y 
vulnerabilidad. Por lo tanto, el principal objetivo de investigación de este estudio 
fue proporcionar datos de referencia que puedan mejorar la comprensión de 
los procesos hidrogeomórficos, así como explorar el potencial de las especies de 
árboles tropicales en aplicaciones dendrocronológicas. Por lo tanto, este estudio 
combina sensores remotos, evaluaciones meteorológicas y técnicas de anillos de 
árboles con análisis estadísticos, modelos hidráulicos y evaluaciones de riesgos. La 
naturaleza innovadora de esta investigación describió la muy limitada experiencia 
disponible en términos de análisis de anillos de árboles en Costa Rica y la clara falta 
de comprensión sobre desastres pasados y su vínculo con el clima. Es probable 
que este estudio contribuya a la implementación de nuevas metodologías en la 
investigación del riesgo de desastres y, con suerte, contribuirá a futuras estrategias 
de adaptación en los trópicos, la región con mayor biodiversidad del mundo.

Palabras clave:  dendrocronología, amenazas naturales, reducción del riesgo de desastres, 
trópicos, países en desarrollo.

1. Introduction
Weather-related disasters tend to sum most casualties and economic losses every 
year at a worldwide level. Forecasting hydrometeorological hazards remains 
challenging despite improved knowledge of potential triggers and sophisticated 
climato-logical models. Furthermore, climate change will affect the occurrence and 
the nature of processes, rendering accurate predictions even more challenging in 
data-scarce regions. Global warming is expected to lead to an increase in flooding 
over the decades to come, with delicate consequences on livelihoods (UNDRR, 
2019; Pinos & Quesada-Román, 2022). Therefore, more research is therefore 
critically needed to reduce uncertainties of climate change scenarios related to 
climate and hydrological models (Kundzewicz et al., 2018).

The tropics count for approximately 20% of the world land surface (Peel et al., 
2007), but they accommodate the 50% of the global population (Tatem, 2017), 
and are affected by substantial land-use changes (Hettig et al., 2016). Moreover, 
developing countries have fast urbanization and increasing population density 
processes resulting in greater exposure and vulnerability (Mitchell et al., 2015). 
Consistently, low-latitude regions usually present high values for expected socio-
economic losses due to earthquakes, volcanic risks, landslides, floods, storm 
surges, and tropical cyclones (Figure 3). Developing countries in the low latitudes 
are largely more affected by disasters worldwide (Noy, 2009).

Most common hydrometeorological hazards on tropics are landslides, floods, 
tropical storms, and droughts (UNISDR, 2009). On one hand, tropical regions are 
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hotspots for landslides (Lin et al., 2017). Landslides are linked to rainfall intensity 
and duration (Segoni et al., 2018; Carrión et al., 2021). The past and projected 
global mortality risk of landslide around the world shows a close link with tropical 
mountain regions (Kirschbaum et al., 2015; Shi & Karsperson, 2015). On the other 
hand, tropical floods are controlled by land-use changes, floodplain occupation, 
intense yearly or extraordinary rainfall processes (Syvitski et al., 2014). Different 
climatic modes (e.g., AMO and ENSO) control the occurrence of extraordinary 
rainfall events in low latitudes such as tropical cyclones (Goldenberg et al., 2001; Sun 
et al., 2017; NOAA, 2022). Thus, bigger inlets and faster change rates have recently 
caused more extreme tropical floods (Wohl, 2006).

Hydrogeomorphology is an interdisciplinary discipline focusing on interactions of 
hydrologic with geomorphic processes in their temporal and spatial dimensions (Sidle 
& Onda, 2004). Depending on the scale, climate, topography, soils, vegetation, and 
land use affect differentially hydrogeomorphic processes. Most catchment studies still 
lack the information to measure runoff, erosion processes, and sediment transport 
processes. There is a necessity to perform these studies at different scales, combined 
with long-term catchment monitoring to generate field data to parameterize, test, 
and accurately calibrate numerical models (Sidle et al., 2017). Nonetheless, such 
information normally lacks in low latitudes (Wohl et al., 2012).

Dendrogeomorphic applications provide results that can reduce the information 
gaps of regions with data scarcity. Botanical evidence is a critical proxy to determine 
the magnitude and frequency of hydrogeomorphic processes, e.g., floods, 
landslides, and debris flows (Stoffel & Bollschweiler, 2008; Stoffel et al., 2013; Stoffel 
& Corona, 2014). A key implication of the vegetation-hydrogeomorphology linkage 
is that woody plants can allow reconstruction of ecological and hydrogeomorphic 
processes over several decades to centuries (Stoffel & Wilford, 2012). The 
hydrogeomorphic process information gathered by means of dendrogeomorphic 
techniques can certainly improve model uncertainties, event reconstruction and 
hazard zonation (Allen et al., 2018).

Since data on past events is critically lacking in tropical regions, this research 
aims to investigates the potential of tropical dendrochronology to assess 
hydrogeomorphic processes and to reduce uncertainties for risk assessments. 
Tropical mountains are dynamic regions with energetic torrents that commonly 
comprise dense vegetation, making possible the dendrogeomorphology 
implementation as a reliable method to assess hydrogeomorphic 
processes. Therefore, this research will present geomorphic, hydrological, 
dendrochronological, and risk assessment applications made in Costa Rica as a 
tropical/development study example for limited data regions/countries.  

2. Materials and methods

2.1. Costa Rica: an Earth sciences’ small lab 
Tectonic activity of Costa Rica is composed by the interaction subduction 
margin of the Cocos and Caribbean plates, the microplate of Panama, and the 
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subduction of the Cocos volcanic ridge (Alvarado et al., 2017). The country is 
divided in three morphotectonic units: a forearc, a volcanic front, and a backarc 
that comprise the country’s lithology (Marshall, 2007). The forearc widens along 
the Pacific seaside with intricate morphologies since Cretaceous age (Denyer & 
Alvarado, 2007). The volcanic front comprises the main cordilleras made mostly 
of volcanic and sedimentary rocks since Paleogene age (Alvarado, 2021). The 
backarc spreads since the Caribbean plains of Tortuguero’s flatlands to the hilly 
relief of the south Caribbean (Quesada-Román & Pérez-Briceño, 2019). The 
principal geomorphic dynamics in the country are fluvial, volcanic, and coastal, 
but some karstic and glacial areas also pop up (Quesada-Román & Pérez-Umaña, 
2020). 

The continuous sequence of cordilleras that cross over Costa Rica with 
an NW-SE alignment characterizes the Pacific and Caribbean basins. This 
topographic barrier also controls the amount of rainfall in each basin: Pacific 
and Caribbean (Amador et al., 2010; Quesada-Román et al., 2020b). The  
Pacific climate shows a bimodal precipitation regime, but it is hard to identify a 
dry period in the Caribbean climate (Castillo & Amador, 2020). The Caribbean 
side’s annual rainfall totals are up to 3000 mm; they are generally below 3 m in 
the Pacific. These climatological characteristics justify than over a ninety percent 
of disasters in the country are hydrometeorological. Moreover, sixty percent 
are floods and thirty percent are mass movements (Campos-Durán & Quesada-
Román, 2017; LA RED, 2022). 

The country’s population reached 5 million people in 2018, and, over the last 
decades, its dynamics changed from a significant rurality to a strong urban trend 
achieving three quarts of the inhabitants in 2011. Mass movement and flooding 
research have been vast in different regions of the country but mostly in Spanish 
(Quesada-Román, 2021; 2022). Nevertheless, the production of detailed-scale 
hazard maps and its combination with vulnerability and risk calculation is scarce 
(Quesada-Román et al., 2021c).

2.2. Fieldwork
Fieldwork for this study summed the experience working in this territory 
since 2010, but specifically for this research between 2016 and 2019. This 
study analyzed the hillslopes of the Miravalles volcano, low and flatlands of 
Upala at northern Costa Rica, and Térraba catchment at southern Costa Rica. 
Geomorphological mapping fieldwork procedures were made characterizing 
gravitational and fluvial landforms and checking the pre-mapping subproducts 
in all the sites. During the field surveys dendrogeomorphic techniques were 
used taking samples from impacted trees to reconstruct the water heights 
using their scars in Térraba catchment. These heights were after used to model 
hydraulic models and calculate peak flows. During field-works drone flights 
were made to survey river reaches that eventually were used in hydraulic 
models. 
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2.3. Statistical analysis

This study applied Pearson correlation equations and performed generalized 
linear models (GLM) to describe statistically significant linkages between 
obtained variables with other environmental parameters. Based on the Akaike 
Information Criterion (AIC), we used a backward selection to contrast the 
full models against the alternative models. Using z-score co-variables were 
standardized (regression coefficient divided by standard error). Model variables 
were used to evaluate the weight of each interaction explaining the studied 
parameters. Examples of these applications were: a) variables controlling 
landslides occurrence after an earthquake and hurricane in 2016 at northern 
Costa Rica (Quesada-Román et al., 2019), and b) geomorphic and hydrological 
parameters influencing peak discharges at local and regional scale at southern 
Costa Rica (Quesada-Román et al., 2020a, 2022).  

Two-dimensional (2D) hydrodynamic models using IBER were used to model 
water depth of flood event related to Tropical Storm Nate in 2017 in seven 
stream reaches (Quesada-Román et al., 2020a). Bed friction was estimated in 
the reaches with Manning's n roughness coefficient as homogenous roughness 
units. The following Manning values were used: n= 0.075 (main channel),  
0.16 (forest), and 0.08 (sparse vegetation). Modeled successive inlet discharges 
based on historical extremes were computed. Available data from hydrological 
data of yearly maximum flows from eight stations from 1962-2019 was employed 
to apply a regional flood-frequency method employing the Bayesian MCMC 
(Markov Monte Carlo Chain) algorithm (Quesada-Román et al., 2022). 

2.4. Risk mapping
First, several morphometric and morphogenetic maps were made in the different 
stages and places of this work (Quesada-Román & Villalobos-Chacón, 2020). 
The study follows a threefold stepwise geomorphological mapping which is 
inte-grated by a pre-mapping, fieldwork, and post-mapping phase. Those maps 
are the baseline for other flood and landslides maps. A flood risk assessment 
merged the regional flood-frequency study coupled with dendrochronology 
(hazard), a detailed cartography of population/infrastructure density (exposure), 
and a social development index (vulnerability) in one of the study applications in 
Térraba catchment (Quesada-Román et al., 2022).

3. Results

3.2. Can earthquakes, hurricanes, and landslides interact?
The Miravalles volcano, in northern Costa Rica, was impacted by an earthquake 
of 5.4 Mw (July, 2016) and followed by extraordinary precipitations associated 
to the Hurricane Otto (category 3) just a few weeks after (November, 2016). 
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Hurricane Otto passing left roughly 300 mm of rain over the volcano. Using 
a general linear regression model (GLM), it was possible to characterize the 
interactions among the parameters influencing landslides (epicenter distance, 
precipitation, altimetry, and slope). 

The cascading 2016 disaster caused 942 mass movements (Figure 1). 62% 
of them occurred between 3 to 6 km from the prior epicenter and in the E, 
SE, and S slopes of Miravalles volcano where local faults density concentrate, 
and precipitation summed maximum values throughout the cyclone. The 
GLM validates a combined earthquake-hurricane coupling with greater 
massmovements densities near the epicenter, at zones with greater rainfall 
totals, steep and higher regions.  

Figure 1. Debris flows and landslides generated by Hurricane Otto over Miravalles volcano.

The application of Sentinel-1 synthetic aperture radar and WorldView-3 and 
-4 images helped to map the flooded areas derived by Hurricane Otto in Upala 
municipality (Figure 3). Debris flows impacted roughly 27 km2 (Figure 2) and 
moved down the slopes as flash floods in approximately 74 km2 (Figure 4), with 
eight casualties in the vicinity of the Miravalles volcano and roughly 10 million 
US$ of economic impacts in Bagaces and Upala municipalities.
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3.3. Botanical evidence, hydrological, and disaster risk assessments
The Térraba catchment in central-south has the bigger area and peak discharge 
records in Costa Rica with 4765 km2. Seven random sample places along the 
catchment were used to reconstruct the peak discharge of a recent tropical 
cyclone (Tropical Storm Nate, 2017) employing botanical evidence, especially 
scars on the trees (Figure 5). Interestingly, trees on cut banks or terraces have 
minimal uncertainties among observed and modeled heights of flows, not in 
straight channel reaches (Figure 6).

Figure 2. 	 a) Flights over Miravalles volcano following the cyclone. b) Mass move-ments 
on Miravalles volcano NE slope. c) Large blocks and wood moved along the NE 
volcano slope. d) The debris flows produced four casualties and immense eco-
nomic losses.      

In the second phase, the regional flood-frequency analyses were 
performed. The study combined a dendrochronology assessment and peak 
discharge calculation to obtain flood return periods. These return periods 
were merged with the Topographic Wetness Index (TWI) to ascertain regional 
flood hazards throughout riverbeds and surrounding areas. Flood exposure 
was determine using the population and infrastructure density. Flood  
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Figure 3. 	 Geomorphological units and Hurricane Otto flash floods in Upala municipality.

Figure 4. 	 Flights over Upala after the passing Hurricane Otto. Debris flows and flash 
floods carried large wood (a). Downstream the floodplains spread out (b). Rice 
and pineapple croplands, and forest/wetlands fragmented areas were the 
most flooded areas (c, d).
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Figure 5. 	 Successive inlet modeled discharges using historical extremes, 
dendrogeomorphology, and a two-dimensional hydrodynamic model to 
calculate peak discharges.

vulnerability was based on the social development index (IDS, 2017) which 
merges fourteen socioeconomic parameters nationally (MIDE-PLAN, 2017). 

The highest risk values are distributed throughout the catchment in 
confined sites but mainly located in General, Unión, Pejibaye, Ceibo, and Limón 
catchments, which are very populated, less favored, or indigenous regions. 
Medium and low risk results responded to less populated catchments, mainly 
agricultural areas such as Pacuar, some parts of Volcán, General, and Coto Brus. 
The transdisciplinary approaches combination proved useful in the scarce-
information Térraba catchment and about 6000 people live in looding risky 
areas (Figure 7). 

4. Discussion

4.1. Monitoring earthquake-cyclones interaction regions
The consequent occurrence of earthquakes and extraprdinary 
hydrometeorological events trigger compound and amplified disasters 
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(Wallemacq & House, 2018). Central American tectonic dynamics make this 
region remarkably vulnerable to mass movements (Alvarado et al., 2017). 
Moreover, high weathering and wet soils conditions are ideal for earthquake-
induced landslides (Bommer & Rodríguez, 2002). In addition, high precipitation 
in Central America triggers several landslides every year. Consequently, 
the isthmus has a very high link among mean daily rainfall totals and mean 
daily landslides worldwide (Froude & Petley, 2018). Therefore, a good 
recommendation is to monitor earthquake previously affected regions during 
subsequent extraordinary rainfall events (Piciullo et al., 2018).

Figure 6. 	 Tree’s geomorphic location controls the uncertainties among observed (scars) 
and calculated peak discharge. Uncertainties are lower on stable fluvial 
landforms such as point bars, terraces, and cut banks.  

Large wood on debris-flows generated critical impacts on infrastructure 
during the Hurricane Otto. Tropical conditions promote great wood decay and 
therefore catchments can transport high capacity of trunks linked with large 
peak discharge (Cadol et al., 2009; Wohl et al., 2017). Hence, large wood is a risk 
enhancer of infrastructure damage, block river channels, and intensify floods 
(Ruiz-Villanueva et al., 2016). An extraordinary number of large wood pieces 
were withdrawn from the channel network around Miravalles volcano days 
after the event. 
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Figure 7. 	 Flood risk determination for the Térraba catchment at central-south Costa Rica. 

4.2. Tropical dendrogeomorphic peak discharge calculation reliability 
The use of UAV photogrammetry can generate high-resolution orthoimages which 
can reduce topography uncertainties. This information is key to produce good 
digital surface models and precise hydraulic models. The study results are even 
similar or lower than temperate regions such as Poland (Ballesteros-Cánovas 
et al., 2016), United States (Yanosky & Jarrett, 2002), Canada (Gottesfeld, 1996), 
Spain (Ballesteros-Cánovas et al., 2011a, b; Victoriano et al., 2018), Canary Islands 
(Garrote et al., 2018), or Bhutan (Speer et al., 2019).

The trees located on point bars and straight channels are impacted by 
higher flow velocities and Froude numbers in the hydraulic model. For future 
assessments, to significantly reduce the time in dendrogeomorphic sampling 
and to enhance results is compulsory to use more stable landforms such as cut 
banks and alluvial terraces. These results were consistent with previous studies 
(Ballesteros-Cánovas, 2011a; Gottesfeld, 1996; Yanosky & Jarret, 2002; Victoriano 
et al., 2018).

4.3. Are disaster risk assessments possible in scarce-data countries?
Regional flood risk assessments in large scale geomorphic units are achievable 
using a group of general (systematic hydrological data, socioeconomic indexes) 
and high-resolution inputs (UAV images, hydraulic models, detailed population 
densitydata). Térraba catchment most inhabitants are considered to live in 
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rural settings and associated with agriculture (INEC, 2020). Community capital 
and spatial variability define rural areas disaster resilience (Cutter et al., 2016). 
Communities closer to urban centers have an improved capacity dealing with 
flooding (Jamshed et al., 2020). Moreover, developing countries’ rural areas 
are extremely vulnerable to disasters. Furthermore, its vulnerability responds 
with high migration levels, dispersed benefit from social protection programs, 
and scarcer or no savings to soft the impacts (Deria et al., 2020). Additionally, 
Térraba catchment comprise numerous indigenous territories that should be 
evaluated by their knowledge and cultural characteristics (Kelman et al., 2012). 
Therefore, rural, and indigenous revenues rely on livelihood assets surrounded 
by vulnerable or protected ecosystems (UNDRR, 2019). Therefore, developing 
countries’ lower income households in rural are greatly affected by the impact of 
disasters (Jakobsen, 2012; Arouri et al., 2015). For instance, public policies such as 
poverty reduction, territorial planning, and environmental management should 
be primary instruments governing disaster risks (Lavell & Maskrey, 2014).

5. Conclusions
This research found a set of future research lines for natural hazards and 
dendrochronology in Costa Rica and the tropics. The study of hydrogeomorphic 
processes can be improved through the creation of higher-resolution baseline 
data, especially also in terms of better imagery (e.g., satellite, airborne, drones, 
LiDAR) and more intensive fieldwork to generate better geomorphic maps 
and statistical modelling to develop suitable natural hazard assessments 
and zonation. Previously affected mountain regions by earthquakes must be 
monitored in extraordinary precipitation events to anticipate further disasters. 
Areas where mass movements generated by earthquakes and subsequent 
strong rainfall events can be triggered are necessary to be studied to minimize 
casualties and losses in developing countries. Flood-frequency analyses with 
dendrogeomorphic estimations and hydrological measurements can be 
precisely used to calculate cyclone-induced peak discharges and floods. Coarse 
and detailed data can be useful implementing regional flood risk evaluations 
in large-scale catchments. A regional flood-frequency approach in parallel 
with dendrogeomorphology and risk assessment is a practical contribution 
for territorial planning strengthening the resilience of tropical catchments 
populations. This multidisciplinary procedure can be employed in countries 
where hydrlogical reference information is limited.
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